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SUMMARY

-................ In Part I of this study (Lopez, 1988), numerical solutions of the

axisymmetric Navier-Stokes equations are presented and compared with

results from experiments for a confined cylindrical flow. The details of the
vortex breakdown phenomenon are calculated with a high degree of
accuracy. From solutions over a range of parameters the essential features of
the flow are obtained. These solutions also provide flow quantities such as the
vorticity and the pressure throughout the volume which would be difficult to
obtain from experiments. In this paper the solutions are explored and the
essential physical mechanisms of vortex breakdown in this particular
geometry are identified. These mechanisms, which rely on the production of a
negative azimuthal component of vorticity as a result of the stretching and
tilting of the predominantly axially directed vorticity vector, are elucidated

-- with the aid of a simple, steady, inviscid, axisymmetric equation of motion.
This equation has been a starting point for most studies of vortex breakdown
but a departure in the present study is that it is explored directly and not
through perturbations of an initial stream function. The findings are then
generalised to the case of vortex breakdown in swirling pipe flows.

DSTO
M E L B 0 U R N E

(C) COMMONWEALTH OF AUSTRALIA 1988

POSTAL ADDRESS: Director, Aeronautical Research Laboratory,
P.O. Box 4331, Melbourne, Victoria, 3001, Australia



CONTENTS

Page No.

1. INTRODUCTION 1

2. CONFINED SWIRLING FLOWS 2

2.1 Summary of the principal features of the flow 2

2.2 Theoretical considerations 2

2.3 Physical mechanisms 6

3. SWIRLING FLOWS IN PIPES AND IN A FREE STREAM 11

3.1 Preliminary considerations 11

3.2 Physical mechanisms 13

3.3 Comparison with experiment 14

4. CONCLUDING REMARKS 16

References

Appendix 1

Figures

Distribution

Document Control Data

IN~CL Accession Por
NTIS CPA&I
DTIC TAB C
Unananwed 1

By
DIstrit~uton/

Avallabi.t7 

Codes



1

1. Introduction

The attraction of the confined swirling flow of Part I to a study of vortex breakdown

is that the flow is defined by only four variables, H, R, Qt and a, each of which, in an

experiment, can be very accurately determined. Similarly, from a numerical point of

view, the flow is confined in a fixed volume with very well defined boundary conditions.

It was hoped that if numerical solutions for various H/R and Re = fQR 2 /v could be

obtained which very accurately predicted the resulting flow in such a well defined ex-

periment then the physical mechanisms of vortex breakdown could be elucidated from

these solutions and further, that these mechanisms might be generalised to the swirling

flows of more practical significance in pipes and in a free stream.

Many features of vortex breakdown have been well recognised and the early works

of Squire (1960) and Benjamin (1962) have been the starting point for many subsequent

studies. A departure in the present study from these formulations is that the numerical

solutions are explored not from a consideration of perturbations to an initial stream

I- I .._ ,. function but more directly from the development of the azimuthal component of vorticity.

This leads to criteria which depend essentially on the relationship between the angle of

the vorticity vector and the velocity vector on stream surfaces upstream of breakdown.

The numerical results in Part I demonstrate the accuracy with which the experi-

mental results can be predicted for confined flows in which 'vortex breakdown' develops

and this paper, Part II, explores the underlying physical mechanisms which account for

the essential features of the flow and are important in 'vortex breakdown'.
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2. Confined swirling flows

2.1 Summary of the principal features of the flow.

As suggested in Part I, for the confined flow in which H/IR = 2.5 and Re > 1600,

the central core flow, i.e the flow returning towards the rotating endwall, might be re-

garded as practically inviscid apart from the recirculation zone and the fluid that passes

near to it. This first approximation, expected to be increasingly valid as Reynolds num-

ber increases, is supported by Figure 1 which shows contours of the streamfunction '0,

the angular momentum, or circulation, r and the total head H. A detailed comparison

between these contours shows that in this central core region r and H are approximately

constant on stream surfaces, apart from those surfaces within and near to the recircula-

tion bubble where r and H are relatively small. An approximation that they are constant

on the stream surface would seem unlikely to change the principal features of the flow.

Of course, the experiments and the numerical calculations show that this core flow is

critically dependent on Reynolds number but mainly in the sense, it seems, that Re

-...... determines an 'upstream' distribution of r(r) and H(r) and that once this distribution

is established the subsequent core flow, in which vortex breakdown occurs, is largely an

inviscid rotational flow apart from the flow within and near to the recirculation zones.

The most striking features of this core flow are the divergence from an upstream

narrow core to a much larger diameter flow which is almost in solid body rotation, and

correspondingly, the development of a wave as a result of an 'overshoot' in the initial

divergence. The apparent effect of increasing Reynolds number is to change the upstream

• .- . : distribution of r(r) and H(r) in a way such as to increase the initial divergence, increase

the 'overshoot', reduce the wavelength of the resulting wave and reduce the 'damping'

S-. of this wave. The contours of the streamfunction (Figure 2 from Part I) suggest that the

appearance of recirculation bubbles is related to the waviness in the outer flow. These

preliminary observations provide useful approximations and working hypotheses which

are explored in the remainder of Section 2.

2.2 Theoretical considerations.

Steady, inviscid, axisymmetric swirling flow is particularly interesting in that it can

be looked at from the point of view of an interaction between the total head and the

angular momentum of the fluid (both of which are conserved on a stream surface), or, in

terms of a balance between the radial pressure gradient and the centrifugal force, or, in

terms of the generation of the azimuthal component of vorticity through the stretching
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and tilting of vortex lines.

The relationship between these three different perspectives is as follows. In terms

of the radial pressure gradint and the centrifugal force, the othei radial acceleration

terms are
Ou Ou V2 

_ Op
UL + Uh- = - -_ 1r U9z r pot (1)

In terms of the angular momentum (or circulation) r z rv, and the total head H

p/ p 4- (u 2  -7)2 u'2 )/2, (I) may be written as

97t F 6F O9H allWU? O -0 0-+V,.- (2)

Thirdly, since the azimuthal component of vorticity is 7 = OlL/Oz - du,/Or, then from

(2)
S F oH (3)

' - r2 9r Or'

or, since the streamfunction V is determined by u - -1/rO9/Oz and u, = l/r04'/Or

and since P and H are constant on V), it follows from (3) that

r do dH...- =r - d  '  (4)

Equation (4) has been a starting point for most discussions of vortex breakdown.

Following Squire (1960), it is usually rewritten by replacing q with -1/r7 24. Notwith-

standing that F and H are functions of r and z, the equation as it stands is of such a

simple form that we have pursued its implications more directly. In particular, if the

..... curve C in the r, z plane whose radius r is given by r = o(z) is chosen such that on C

the streamfunction is a constant, i.e V;(r, z) = 01, then on C

77(z) - ( 'r'( - H'0110), (5)
o"

d' =( 0 and u wcr'(z); (6)

or, on a stream surface
A

77(z) - B-, (7)

and

di7 (A B) da, (8)

where .4 = P(V,)F'(01 ) and B H'(00.
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Equation (7) is remarkable since it provides such a simple expression for one com-

ponent of the vorticity in terms oniy of the radius of the stream surface yet in a complex

flow where the vorticity is three dimensional, not normal to the velocity, and where the

stretching of vorticity is an essential mechanism in the flow.

Further insight into the implications of equations (7) and (8) is gained if it is

assumed that at some upstream station zo and on a particular stream surface j = ,

the radius of the stream surface is 0 and the azimuthal and axial components of both

the velocity, i.e. v and w, and vorticity, i.e. Y7 and C. are known and have the values v0 ,

w0, 7io and Co (see Figure 2). In this case A and B may be determined simply, since

7 ar = dr
.. .. ... Or d

so that on 1
r'( 1) = o

Wa

and
OIovo

A = r(v)r'(vb) = c--°o.

B may be determined from (7) evaluated at z = zo. If 7 7 0, then

B = rL°( °  
1),

and if 70 = 0 then

B =vo~o

Thus from (7) the equation for 77 on the stream surface downstream from zo is

77 = aoo (. ,
:.~~ ~ g .; o ) '

for 70 = 0, or

770 00 00 0

for 770 - 0, where ao = vo/wo and 03o = 7/Co are the tangents of the helix angle for the

velocity and vorticity respectively. Thus, downstream of z0, the ratio of 77 on a stream

surface to its value on the surface at zo, depends only on the ratio of the tangents of

the helix angles of the vorticity and velocity on the surface at zo and on the ratio of the

radius of the stream surface to the radius at zO.

Equation (9) has interesting implications. Assuming that inviscid behaviour is the

dominant mechanism responsible for the rapid divergence of the streamtubes observed



in vortex breakdown, a reasonable hypothesis (in the absence f b,,dies in the flnw fielI)

is that the development of a negative azimuthal component of vorticity on some stream

surfaces is necessary if the axial velocity is to be brought to zero (see Figure 2.)*

if this is so then from equation (9) it is clear that, for 71o positive, r will only be'-ome

negative on a diverging stream surface if ao > 0i, i.e. v0 /w 0 > 7ro/0. A helix angle

for the velocity which exceeds that of the vorticity on some stream surfaces would seem

therefore to be a necessary condition for vortex breakdown to occur since, from (9), as

,',ro incrcases from unity, then for oo .
3 n. ll Ylo decreases to zero and beccmes negative

at a sufficiently large a/cr0 . Figure 3 illustrates the behaviour and the dependence on

o/00.

.-The development of negative 77 on stream surfaces will induce a negative axial

velocity on the axis which, by continuity, will lead to a further increase in 0' and corre-

spondingly, a further increase in negative vorticitv, etc. This can be seen as a kind of

'positive feedback' which accounts for the relatively rapid divergence of stream surfaces

in the proximity of 'breakdown'. In essence, however, this is a matter of compatibility

between the velocity (U) and the vorticity (V x U) arrived at from a consideration

of the dynamics of vorticity and continuity. It follows that a necessary condition for

subsequent vorLx breakdown (in the absence of viscous or turbulent diffusion and the

absence of bodies in the flow field) would seem to be that vo/wo > I/0O.

A reduction in azimuthal vorticity with increasing radius is readily understood

physically for the simple case of a flow which is cylindrical upstream and has 17 = 0. If

two material points on a vortex line (which is axial in this cylindrical flow) move with

the fluid and the leading point advances to a location where the radius has begun to

increase, then this leading point will experience a reduction in azimuthal velocity due

to the conservation of 1' on the stream surface. The material line between the points is

therefore stretched and tilted, and since the vorticity moves with this material line, a

negative azimuthal component of vorticity is generated. This accords of course with the

For simplicity, in this paper z is taken to increase in the direction of the primary

axial velocity in the core flow and correspondingly negative azimuthal vorticity will

induce an axial velocity in the opposite direction. In Part I increasing z is in the

opposite direction away from the rotating end wall and the sign of the corresponding

azimuthal vorticity is the reverse of its sign in this paper.
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77o = 0 case of equation (9). More generally however, for T70 0, then from (8) or (9),

di7  -o ( 0

which implies not a reduction but an increase in azimuthal vorticity with increasing

radius, i.e. in the absence of a body in the flow field, 'negative feedback' in terms of the

above compatibility argument, 'f
0  

)Ct0

' o < I

It follows that for o-/r0 > 1 and 77o positive then for ao/L30 < 0.5, d1/da > 0; for

0.5 < ao/B3o < 1, 71 remains positive and at sufficiently large a/o, d7l/da > 0; and

only for ao,o > 1, does r become negative for sufficiently large a/go. (See fig. 3).

[This more general result is not easily interpreted physically but from an extension of

the above simple argument for the case of ?I = 0, one can see that if 0 >> a 0 it is

plausible that the vorticity vector could be rotated to an even larger helix angle by a

change in the velocity vector with radius (v and w decrease with increasing r) so that

the result that dt1/do" > 0 for 0 > 2ao is not as surprising as it may seem at first sight.)

An analogy in these terms with supersonic flows seems possible in the sense that

strong negative feedback (d 7/de- positive) suggests stability and an absence of waves on

the stream surface. There is not a simple connection, however, between this result and

the supercritical, subcritical distinction described by Benjamin (1962, 1967).

With these general considerations in mind, the vortex breakdown features of the

confined swirling flow may be interpreted as follows.

2.3 Physical mechanisms.

The summary in Section 2.1 and these theoretical considerations suggest that an

important question to ask is why the strong vortical core flow begins to diverge? A

simple, if simplistic answer is clear from equation (1). Downstream from the point where

u = 0 and the stream surface has its smallest radius (or, more generally, downstream

from a region in which the flow is cylindrical) there will be divergence, i.e. positive

au/c9z only if the centrifugal force exceeds the radial pressure gradient [in the absence of

viscous stresses[ . For the confined flow, this imbalance clearly arises from the fact that

the radial distribution of r and H in the narrow upstream core region is determined by

the 'upstream' history of a fluid particle as it travels on its closed stream surface. In



particular, the particle acquires and loses most of its angular moment um and total head

through the action of viscous stresses in the boundary layers near the surfaces of the

volume (Figure 1). There is no reason why the radial distributions of r and H should

lead to 7 0 (equation (3)), or to cyclostrophic balance (equation (1)). Quite the

contrary, in fact, since the turning of the flow from radially inward towards the lower

rotating endwall requires the centrifugal force to exceed the radial pressure gradient.

This is supported by Figure 4 which shows the calculated contours of v2 /r - 1/pOp/Or

for the case Re = 1994. H 'R = 2.5. These contours provide an interesting view of tile

force field; they are not surprising in the sense that they accord with tile waviness of the

stream surface and the corresponding sinusoidal like variation in the radial acceleration.]

The reason for the initial 'overshoot' in the divergence of the stream surfaces and

the subsequent waviness can be seen as follows. From (4), we have

Ou F d dH O10)

For the confined swirling flow, if z= z0 where u 0 and Ou/Oz has a local maximum,

i.e. where a stream surface has its smallest radius, then on a particular stream surface

of radius r = g(z), whose radius is a = go at z = z0,

Ou Ou Ow w(

where .4 and B are the particular values of ldP/do and dH/dk on this stream surface.

The characteristic shape of the stream surface downstream from z0 can be explored

as follows. Since u is wor' (equation (6)), equation (11) may be approximated by

- W(go)g"(Zo) 2 A -B( - go) + w - au, (12)g -010 Or Or at,,

(Note that w(a) = w(o0) corresponds with a small perturbation linearization). Immedi-

ately downstream of zo for example, the diverging stream surface implies an increasing g

and g" is expected to decrease, i.e. a"(z) < a"(zo) because .4(1/0- I/go) and -B(o-oo)

are both negative, assuming, in accord with Section 2.2, that since breakdown occurs,

a0 > 30 and B is, therefore, positive. Note however that Ow/Orb - Ow/Or ,o is expected

to be positive because diverging stream surfaces imply by continuity, a reduction in w

and a relatively larger reduction in w is expected near r = 0 than at large r, (Ow/Or j,

is expected to be negative). Thus, downstream of zo, a" is expected to decrease, but the

rate at which this occurs will depend on w. The continued divergence of the flow and
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corresponding reduction in o," tnerefore leads to a radius of the stream surface at which

a" = 0 (infinite radius of curvature of the stream surface). At this point the local slope

a , is a maximum. Since the flow continues to diverge downstream from this point, a"

becomes negative and the stream surface begins to reduce in slope, turning back towards

the axis.

An alternative explanation for the flow divergence and subsequent turning of the

flow towards the axis may be sought in terms of equation (1). An imbalance in v2 /r -

1, pap/ar gives rise to a positive value of a". On this diverging stream surface, v' r is

decreased due to the conservation of r and at th2 same time, w and v are reduced due to

the divergence, leading to an increased pressure with relatively larger changes for small

r and a reduction in the radial pressure gradient. While not self-evident, the reduction

in v2 /r must exceed the reduction in 0p/0r since, as outlined above, C" approaches zero.

A further alternate and more direct Lxplanation may be sought in terms of the kine-

matics of vorticity (equation (4)). As discussed in Section 2.2, for positive B, (Cq0 > 30)

the diverging flow gives rise to a reduction of the positive azimuthal component of vor-

ticity and the development, with increasing radius, of negative azimuthal vorticity. In

this case, the 'positive feedback' discussed, leads to the further development of nega-

tive azimuthal vorticity and the divergence is expected to continue until the negative

azimuthal vorticity grows to a sufficiently large magnitude for it to turn the diverging

flow back towards the axis.

The fact that the divergence 'overshoots' and that a wave in the stream surfa..e

results may be approximately seen by linearising equation (12) about the radius c- = al
at which o" = 0. Thus for o" = al + (z), then from (12)

w1l" -A _,/ 3, (13)

where perturbations in Ow/Or have been neglected compared with Ou/Oz. A wave in the

stream surface is therefore established with wave number k given by wl k2 - A/0-' + B.

The shape of a characteristic stream surface in the core flow downstream of zo can

be summarized as follows. The stream surface a'(z) diverges fom ao' to o-1 and a-" is

reduced from a maximum to zero. At the radius a = o-1 , the positive slope 0" is a

maximum and the flow continues to diverge, > 0, but a", or 4", becomes negative and

the surface begins to turna towards the axis. This overshoot of the radial displacement

leads to a subsequent oscillation in the displacement of the stream surface about a = c-
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i.e. = 0. The wavelength of this displacement is approximately

-0..55 + , (14)

where wl is the axial velocity at r = a,.

Using the expressions for .4 and B from Section 2.2, the wavelength can also be

approximated by

A, 2 U 5 - + ' 0.5 (15)

A comparison between the wavelength evaluated from (15) and that determined from the

periodicity in the numerical solution is presented in Table 1. The wavelength predicted

by equation (15) was evaluated on a stream surface where r and H are approximately

constant (selected by comparing the contours of r, H and ) as in Figure 1). The

wavelength from the numerical solution was determined from the contours of v 2 /r -

.... .. 1/pp/r. Of course, the wavelength found in both cases can be regarded only as

a typical wavelength. As expected the agreement (approximate) in Table 1 between

the inviscid prediction of equation (15) (and equation (14)) and the numerical solution

increases with increasing Reynolds number. The difference between the predictions of

equations (14) and (15) reflects the fact that equation (14) is evaluated in the region of

the waves, where the flow is most inviscid, whereas equation (15) assumes inviscid flow

from z0 where the radius of the stream surface is a minimum. Closer examination of

Figure 1 shows that the approximation that r and H are constant on stream surfaces is

not accurate in this .egion. Particularly at lower Reynolds numbers it is not surprising

therefore that the azimuthal viscous stresses should lead to some additional reduction in

the azimuthal component of vorticity in this region and correspondingly that equation

(9) would predict a larger radius than the numerical solution, for a given reduction in q.

This is consistent with the prediction from equation (15) of a shorter wavelength than

is four.d from the numerical solution.

As a check ."heth'r the model describes the principal features of the flow, how-

ever, the agr.- -r- seems satisfactory. In accord with this discussion and that of Section

2.2 the subsequen. '',lelopment of a second recirculation zone could be expected if the

wave is of s-,fficic,, amplitude for the subsequent diverging stream surface to develop

sufficient negat:ve azimuthal vorticity to again bring the axial velocity to zero. The
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converging stream surface, by contrast, generates positive azimuthal vorticity which

accelerates the axial hiow.

The principal features and physical mechanisms of the 'breakdown' in the confined

swirling flow are therefore compr,.1ensible in terms of inviscid phenomena. The initial

divergence from a narrow core is the result of the upstream radial distribution of H and

F, the subsequent waviness of the stream surface is a result of a stationary inertial or

centrifugal wave and the development of one or more recirculation zones is a consequence

of the generation of negative azimuthal vorticity through the stretching and tilting of

vortex lines in a diverging, swirling inviscid flow. At a Reynolds number above that

at which breakdown first occurs, the apparent 'critical' dependence of the flow on Re,

discussed in Part I, arises essentially from the dependence of the radial distributions

of r and H (in the core flow) on the action of viscous stresses in the boundary layer

regions near the walls. At higher Reynolds number the core flow behaves in a broadly

inviscid manner and the recirculation zones appear to have relatively little dynamical

significance, except insofar as they are within the region of strong negative azimuthal

vorticity.

These mechanisms which appear to account for the principal features of breakdown

in the confined flow led to our considering their ,applicability to swirling flows in pipes.



3. Swirling flows in pipes and in a free stream

3.1 Preliminary considerations.

The relatively sudden appearance of a rapid divergence in the stream surfaces, and

the corresponding appearance of recirculation zones, occurs in some swirling pipe flows

and in the vortex breakdown observed in flows over delta wings at high angle of attack.

A comparison with the 'breakdown' observed in the confined swirling flow suggests that

these breakdown regions are qualitatively similar, at least up to the first recirculation

region. An essential difference however, is that for swirling pipe flows and to some extent

the delta wing flow, the 'upstream' region may be regarded as essentially a cylindrical

flow for which initially v 2 /r = l/pOp/Or or, in terms of equation (4)

Lqu r rr dH Ocw
---- + -=0.

FZ r do~ 7 Or

For this case, the question that is immediately posed is how does 'breakdown' begin?

One of us (Lopez) has obtained time dependent numerical solutions of the Navier Stokes

equations for various swirling flows in a pipe by the methods outlined in Part I. The

particular family of flows that has been calculated is given at t = 0 by a zero radial

component of velocity, an azimuthal component of velocity
v 1 VC - e?2 a 2) (16
r(1 - e2)(1 2

and an axial component of velocity

w = Wt.(l + We-?2 /'). (17)

These distributions have been found to be good fits to various experimental observations

of vortices undergoing breakdown (eg. Garg & Leibovich, 1979). This azimuthal velocity

distribution ha the further merit that it has the same form as the exact solution for the

diffusion of vorticity from a line vortex (Burgers, 1940).

The distributions of velocity in equations (16) and (17) have the corresponding

azimuthal and axial components of vorticity,

2Wo, Wr _ 2

a 2

and

a(l e-
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and in terms of the helix angles for velocity and vorticity discussed in Section 2.2, on

stream surfaces at z = 0
a0 e )2 V,2 2 (1 - e-""
'8 e- Wr2(1 We-22 )I

where V, = v/Wo. Within the range 1 < W, < 2, a/3 does not vary substantially for

stream surfaces for which 0 < r/a < 1 and at r/a = 1
__ W~ 2  V 2

,go (e - 1)(W. + e) W"

This relationship between to and /o at r/a = 1 for various values of V and W is shown

in figure 5 and the regime is marked for which the inviscid criterion for vortex breakdown

(ao > f0o) is met. The points where numerical solutions have been obtained are also

given in the figure. For a particular flow to be discussed, V- = 1.5, W = 1.25 and at

r = a, ao/3o is 1.95.

The initial conditions for the calculated flows are that equations (16) and (17) are

the velocities at t = 0 for all z. The upstream boundary condition is that these velocities

are imposed for t > 0. The radial boundary condition at r = R is u = 0, Ov/Or = 0 and

= 0. The usual outflow condition, 0/Oz = 0 is applied. (A further discussion of these

boundary conditions and their implementation is set out in Appendix I.) With these

initial and boundary conditions the presence of viscosity is essential for the evolution of

this flow - inviscid flow would not change with time. An example of the development

of the flow for a particular Reynolds number is shown in Figure 6. Of course, at very

low Reynolds number, viscous diffusion dominates the flow development. At higher

Reynolds numbers however, we have found that for the same initial cylindrical velocity

distributions, the time taken before a recirculation zone appears increases with Reynolds
number (defined as Re = Wooa/v). Unlike the confined swirling flow, for these flows

it is the diffusion of axial vorticity which leads initially to v2/r - 1/pOp/Or becoming

positive. Alternatively, we anticipate that it must be the diffusion of vo.-ticity which

leads to a radial redistribution of r and to the stretching and tilting of vortex lines (due

to the axial change in v), with a corresponding reduction in the initial positive azimuthal

component of vorticity with axial distance, and the subsequent beginning of an 'inviscid'

breakdown process.

This broad view of the likely role of viscosity and the development of azimuthal

vorticity is illustrated in the calculations of v, q and k shown in Figure 6 and leads to

the following more detailed considerations.
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3.2 Physical Mechanisms.

In considering the results shown in Figure 6, particular attention is drawn to the

reduction of the azimuthal velocity and vorticity with distance downstream. Initially,

this reduction is due to viscous effects, but it is clear that by t = 40, there is a slight

divergence of streamlines which, by the inviscid mechanisms of section 2, contributes to

this reduction. At t = 80 this azimuthal vorticity has been reduced to zero on stream

surfaces at a downstream distance of about 20a and out to a radius of about a and a fur-

ther divergence of these stream surfaces has generated a negative azimuthal component.

The positive feedback mechanisms described in section 2.2 drive this further develop-

ment of a negative azimuthal component leading, by t = 240, to a small recirculation

zone on the axis, rapid changes in the azimuthal vorticity ahead of this region where

the streamlines diverge, and the evident propagation upstream of the region of negative

azimuthal vorticity due to its own induced velocity. The subsequent appearance of a

second recirculation zone located at a distance downstream where the outer stream lines

diverge and where the azimuthal component of the vorticity has a second maximum is

consistent with the establishment of a wave on the outer stream surfaces by essentially

the same mechanism as in the confined swirling flows.

Further insight into the mechanics of the flow is obtained from a detailed comparison

between the results shown in figures 7(b), 7(c), and 7(d). Figures 7(a) and 7(b) show

the development of the flow for which Vc = 1.75, Wc = 1.6 and Re = 300 (with a

corresponding co//30 = 1.91) from t = 227 to t = 250. Figure 7(c) shows a corresponding

development in an unphysical case in which, for the above flow, at t = 227 the viscosity

is suddenly doubled, (i.e. Reynolds number reduced from 300 to 150). Figure 7(d) is

the case in which the viscosity is suddenly halved (Re = 600) at t = 227. A comparison

between figures 7(b) and 7(c) shows that the subsequent effect of a sudden increase

in the viscosity is to diffuse the axial vorticity and increase the initial divergence of

streamlines but reduce the magnitude of the maximum negative component of azimuthal

vorticity from -1.84 to -1.37, to reduce the size of the recirculation bubble, ad reduce

the rate at which the field of negative vorticity (and the bubble) propagate upstream. By

contrast, comparison between figures 7(b) and 7(d) shows that reducing viscosity reduces

the diffusion of axial vorticity which reduces the initial divergence of streamlines; the

presence of the bubble and divergence of the stream-lines immediately ahead of it and the

reduced diffusion of axial vorticity increases the magnitude of the maximum negative
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component of azimuthal vorticity that is reached from -1.84 to -2.17. The bubble is

correspondingly larger, it propagates upstream a little more quickly, the amplitude of

the wave on the outer stream surface is greater and a small second recirculation zone

begins to emerge.

These results are quite consistent with the discussion in section 2.2. For this flow

the necessary criterion for breakdown to occur (ao >/0) is satisfied. The development

of the flow requires viscosity to initiate a reduction of the azimuthal components of

vorticity and velocity with distance downstream and to initiate the divergence of the

streamlines. However, the development of the breakdown is essentially an inviscid pro-

cess driven by the positive feedback mechanisms described in section 2.2. The reduction

in viscosity introduced after a bubble has appeared, figure 7(d), shows the dominant role

that this inviscid mechanism plays. In some respects the phenomenon in this swirling

pipe flow case is not unlike boundary layer transition in the general sense that the ini-

* ' tial development (ToUmein-Schlichting waves in boundary layer transition) depends on

viscosity and the final transition process is a consequence of 'positive feedback' in the

generation, in that case, of a longitudinal component of vorticity.

-3.3 Comparison with experiment.

_ ....... While more detailed comparisons with experiment over a wide range of parameters

have not yet been made, the essential features of the evolution of an axisymmetric vortex

breakdown are evident. The description by Sarpksya (1971) of the initial axisymmetric

swelling of the vortex core together with Escudier's (1986) evolutionary sequence in his

Figure 9.12 (reproduced here in Figure 8) are seen in the calculation of the axisymmetric

evolution of Figure 6. Noting that in the calculations the time scale of the evolution

is given by Wo,/a, and recalling that the Reynolds number is based on the core radius

a rather than the pipe diameter, we find that the time scale of the evolution compares

favourably, (at a comparable Re) with that obtained in Escudier's (1986) experiment.

(Due to the lack of a quantitative measurement in the experiment, only a rough esti-

mate of the core diameter a could be made). A comparison between the structure of the

leading bubble with the flow visualizations of Escudier (1986) shows good agreement.

For comparable times in both the experiment and the calculation, the bubble migrates

upstream approximately the same distance (four bubble diameters) from the point of

initial swelling of the core. The appearance of a second breakdown zone at about one

bubble diameter downstream from the leading bubble is evident in both experiment and
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calculation. In the calculation this second recirculation zone is very unsteady by com-

parison with the leading bubble and the flow visualization is suggestive of asymmetries

in this region of the flow, whereas the leading bubble is evidently largely axisymmetric.

Also very evident in the computed leading bubble is the 'two celled' structure first iden-

tified in bubble breakdowns by Faler & Leibovich (1978). The main outer cell, or vortex

ring, has an associated negative azimuthal component of vorticity and the weaker inner

ring has a positive azimuthal component of vorticity.

!7---.-m



16

4. Concluding remarks

Many of the features of vortex breakdown have been well recognised previously.

The early works of Benjamin (1962, 1967) have been the starting point for many sub-

sequent studies. However, for the confined flow and the swirling pipe flow, we have not

found the 'conjugate flow' theory of particular assistance in illuminating the mechanics

of these flows, for the following reasons. The theory assumes a cylindrical flow upstream,

whereas in the confined flow, there is no region far upstream of breakdown in which the

centrifugal forces balance the radial pressure gradient. Similarly, there is no evidence of

the importance of energy dissipation in the outer flow. In the swirling pipe flow case,

whereas the 'conjugate flow' theory assumes an inviscid development, the calculations

and physical mechanisms for the generation of negative azimuthal vorticity that we have

considered depend initially on the diffusion of axial vorticity. It seems nevertheless true

that having established breakdown, the azimuthal vorticity which is generated propa-

gates upstream on an inertial time scale and the diffusion of vorticity, which is initially

responsible for the breakdown is of lesser significance and continues to operate on the

much slower viscous time scale.

From the discussion in this paper, the essential feature of vortex breakdown is the

generation of negative azimuthal vorticity. For the confined flow, the rapid generation

of this component of vorticity is a consequence of the upstream distribution of r(r) and

H(r) and the non-cylindrical nature of the upstream flow. For the swirling pipe flow, we

find the initial reduction in the azimuthal component of vorticity to be due to viscous

diffusion and the resultant stretching and tilting of axial vorticity. As the flow begins

to diverge however, the further production of nega:ive azimuthal vorticity is dominated

by inviscid mechanisms and there is a close similarity between the confined flow and the

swirling pipe flow in this region.

A preliminary application of these ideas to the more complex problem of vortex

breakdown in delta wing flows suggests that the radial and axial velocity distributions

in the core flow which establish a characteristic ao/,lo for each angle of attack will play

a critical role in determining whether breakdown can occur and if so the strength and

location of it. Similarly, by broad analogy with the swirling pipe flow, turbulent diffusion

could be expected to be important if the flow initially is in approximate cyclostrophic

balance. In this case increased turbulent diffusion would be expected to reduce the size

of the breakdown bubble and to reduce the distance to breakdown. Of course, an outer
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flow which creates diverging stream surfaces will shorten the distance to breakdown

and increase the relative importance of the inviscid mechanism in reducing an initially

positive helix angle of the vorticity. [This effect of a diverging outer flow has been

observed in swirling pipe flows and may be seen in a comparison between the diverging

pipe results of Sarpkaya (1971) and the constant diameter results of Harvey (1962)].

The essential ideas which link the generation of negative azimuthal vorticity with the

helix angles of the velocity and vorticity vectors will be applicable also to swirling flows

past axisymmetric bodies located on the swirl axis. The positive feedback mechanism

could account, for example, for the sensitivity of these flows to the intrusion of external

probes leading in some cases to a rapid development of vortex breakdown. For ao > /0

the divergence of stream surfaces over a body could be expected to lead to a forward

recirculation zone ahead of the body if ao/03o is sufficiently large or the body has a

large enough diameter. Such a flow with a forward recirculation zone has been observed

recently by Joubert (private communication). As discussed in section 2.2, the flow for

.. .the case where 80 > 2aO is much less clear; the negative feedback that would accompany

an increase in radius of a stream surface in this case suggests that some dissipative

process ahead of the body will occur.

. .! . , .-
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Appendix I

The main difficulty in the numerical solution of the swirling pipe flow vortex break-

down problem lies in the specification of the boundary conditions. The boundary condi-

tion on the axis of symmetry is obvious but the other three boundary conditions require

a higher level of idealization.

The upstream boundary condition at z = 0 is the one of main concern. Due

to the limited number of available grid nodes (a 101 x 501 grid has been an upper

limit in this calculation) the swirl generator, i.e. guide vanes, and the pipe inlet could

not be simulated at the same time as the flow inside the pipe 'test-section'. Hence,

. .... the upstream boundary must be placed at some location downstream of the inlet and

upstream of the 'test-section'. This requires an assumption that the flow at the upstream

boundary is locally cylindrical and independent of time throughout the evolution of

the calculated flow. Over the past decade, there have been numerous Laser Doppler

Anemometer measurements of the azimuthal and axial components of the velocity (eg.
Faler & Leibovich (1978), Escudier, Bornstein & Zehnder (1980), Uchida, Nakamura

& Ohsawa (1985)) and it has been found that the expressions (16) and (17) provide a

good fit to the experimental distributions well upstream of the location where vortex

breakdown occurs. For those numerical cases where vortex breakdown first appears well

downstream of the inlet it would seem therefore that these expressions, used as boundary

conditions, are a reasonable approximation.

In those cases where the breakdown bubble migrates upstream a change in the

velocities near the upstream boundary as a result of this migration is a clear indication

that the numerical flow has become 'unphysical'. In many cases there is a substantial

. -•evolution of the 'breakdown' before this occurs. The weakness in this boundary condition

requiring further evaluation, however, is that the viscosity changes discontinuously at

the boundary and correspondingly gradients in v (and therefore u) change relatively

rapidly at low Reynolds number, near the boundary.

Of lesser importance, but with its own problems, is the specification of the radial

and downstream boundary conditions. At the downstream boundary, the usual uniform

outflow condition is specified. In the numerical experiments performed, so long as no

rotational flow enters into the computational domain through this boundary, changes in

the location of this boundary demonstrated that the effect of the downstream boundary

was negligible in these calculations, in the development of the initial breakdown. How-
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ever, under some conditions, it was found that multiple recirculation bubbles formed

(much like those reported by Sarpkaya (1971)) and when a bubble forms very near the

downstream boundary (which often happens when the initial azimuthal component of

vorticity is large and positive as a result of a strong axial jet), then the assumption of

uniform outflow is clearly violated and the calculation becomes unphysical. A crude

remedy used was to extend the computational domain further downstream.

The radial boundary condition is a somewhat less difficult problem. Typically,

it was found that if the radial boundary is placed at a radius of at least two core

diameters, then the numerical evolution is weakly affected by this boundary. A similar

weak influence of the radial boundary was also found in the experiments of Harvey

(1962). In the model, the computational domain is stretched in the radial direction so

that there is a concentration of grid nodes near r = 0 thus allowing proper resolution of

the dynamics in the core region. The radial boundary condition is taken to simulate a

limiting streamline, in the irrotational region of the flow, which remains parallel to the

pipe wall. This is physically reasonable so long as the diffusion of vorticity is not large

enough to invalidate the irrotational approximation and the boundary layer on the pipe

wall (which is not computed) remains thin and attached.

An interesting and relevant observation to be made is the difference between the

'downstream' boundary condition in the confined swirling flow case and that in other

flows in which vortex breakdown occurs. In these other cases (e.g. vortical flow over

delta winged aircraft, swirling pipe flows, Ward-type cyclone chambers, tornados and

waterspouts) the downstream boundary condition on the vortex core is 'free', whereas in

the confined swirling flow the rotating endwall forms the downstream boundary which

results in the physical boundary condition that v = 0 at r = 0. The vortex core is

therefore fixed to the center of the downstream boundary. Having this fixed downstream

boundary condition on the vortex core accounts perhaps for the fact that the 'spiral'

form of vortex breakdown which is evident in the other examples of vortex breakdown is

not evident at the values of !lR'/v and H/R reported in the confined flow experiments.



Re A (eq. 15) A (eq. 14) A (num. soln.)

1600 0.64 0.87 1.03
1800 0.55 0.81 0.82
1918 0.57 0.72 0.77
1942 0.70 0.72 0.77
1994 0.66 0.72 0.77
2126 0.61 0.69 0.75
2494 0.66 0.61 0.72

TABLE 1: ESTIMATES OF THE WAVELENGTHS OF THE OSCILLATIONS IN THE
DISPLACEMENT OF THE STREAMSURFACE DETERMINED (i) FROM THE EXPRESSION

GIVEN BY (15) AND (ii) FROM THE PERIODICITY IN THE CONTOURS OF v2 /r- 1/pap/dr

FOR VARIOUS Re AS INDICATED AND H/R = 2.5.



(aVP. Re=1994 H/R=2.5

It

~~;~~;ll~~iJil /1( [1/ : //I'/-,//J7lf-
fitItjii( J, j I I I \l lIf

It/ I Il lit1111111I tl

fI i ~I II \ I\ \'\ III
1111 1111 \\\N,\ \\\

III Io olIIIIIIII

y1111111 I1/,) I/I I I lj I I\III
111111 fil I I 11 1 11J i1 1 il l
I fi l 1 1 1 1 1 1 1 1

1ffll 1 1 11 1 1 )1 11 / f l jI ij l~ j I~ II 1 1

IIt I, I I

4 ~IIIII

omI InI.I-I.81, 1 ma.880111 -6 1 11,wl

FIGURE11 111:1 CONOUR OF (a liy.il (b)1 1AD(11N1HMRDONLPLN ORHR
2.5 AND /1 194 TH COTU LEVEL ARE NONUNFOML SPACED,1 WIT 20tll

(1,111 Wil I AN I-E ELi k Ml~a,a e I, i/I d REPCIEY WH R Ind 3 IN (a)
&~~~~~~~~~~~~~~~~~ Ib N =2I C.TECNOR AEPOTDA 00 YWIHTM
A~~~~~~~ STAD STT HA ENRAHD
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FIGURE lc
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FIGURE 4: CONTOUR PLOT OF v'/r- 1/pap/OrIN THE MERIDIONAL PLANE FOR H/R=
2.5 AND Re = 1994. THE CONTOUR LEVELS ARE NON-UNIFORMLY SPACED, WITH 20
POSITIVE AND 20 NEGATIVE LEVELS DETERMINED BY C-LEVEL(i) = MAX(variable)
x (i/20)3 AND C-LEVEL(i) = MIN(variable) x (i/20)3 RESPECTIVELY. THE CONTOURS
ARE PLOTTED AT t = 1000, BY WHICH TIME A STEADY STATE HAS BEEN REACHED
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ARE PLOTTED AT t = 1000. BY WHICH TIME A STEADY STATE HAS BEEN REACHED.



min.=O max. 1.51410281

min.=O max. 1.07213902

min.=Q max. 13.125
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FIGURE 6(i) t=20
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FIGURE 6: THE EVOLUTION OF THE AXISYMMETRIC VORTEX BREAKDOWN
PHENOMENON IN SWIRLING PIPE FLOW FOR THE CASE OF V, = 1.5, W, = 1.25 AND
Re= W, a/v = 250. THE COMPUTATIONAL DOMAIN HAS A RADIAL EXTENT OF 5a
AND AN AXIAL EXTENT OF 35a IN WHICH 351 GRID POINTS ARE UNIFORMLY
DISTRIBUTED IN THE AXIAL DIRECTION AND 51 GRID POINTS ARE NON-UNIFORMLY
DISTRIBUTED IN THE RADIAL DIRECTION AND ARE CONCENTRATED NEAR r = 0.
THE TIME INCREMENT FOR THE EVOLUTION IS or = 0.01 AND THE
NON-DIMENSIONAL TIMES AT WHICH THE CONTOURS OF (i) v, (ii) q AND (i6) 1,./HAVE
BEEN PLOTTED, ARE INDICATED IN EACH FIGURE.
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FIGURE 7: CALCULATED CONTOURS OF (I)y/, (ii)?l AND (iii)v FOR A FLOW WITH V, =

1.75, W, = 1.6 AND Re INITIALLY 300. (THE COMPUTATIONAL DOMAIN IS OF RADIAL

EXTENT 4a AND AXIAL EXTENT 36a WITH 361 UNIFORMLY DISTRIBUTED GRID

NODES IN THE AXIAL DIRECTION AND 41 NON-UNIFORMLY DISTRIBUTED GRID

NODES IN THE RADIAL DIRECTION. THE TIME INCREMENT USED IS 6t = 0.01.) (a) t =

227 and Re = 300; (b) t = 250 AND Re = 300; (c) t = 250 FOLLOWING A REDUCTION

AT t= 227 IN Re FROM 300 TO 150; (d) t= 250 FOLLOWING AN INCREASE AT t= 227

IN THE Re FROM 300 TO 600.
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FIGURE 8: ESCUDIER'S (1986) OBSERVATION OF THE FORMATION AND
PROPAGATION OF AN AXISYMMETRIC (BUBBLE TYPE) VORTEX BREAKDOWN
DOWNSTREAM OF A GUIDEVANE SYSTEM, (VANE ANGLE 0 = 70" AND THE
REYNOLDS NUMBER, BASED ON THE PIPE DIAMETER AND MEAN AXIAL VELOCITY,
IS 960.)
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from experiments. In this paper the solutions are explored and insight into the
essential physical mechanisms of vortex breakdown in this particular
geometry are identified. These mechanisms, which rely on the production of
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16. ABSTRACT (CONT.)

a negative azimuthal component of vorticity as a result of the stretching and
tilting of the predominantly axially directed vorticity vector, are elucidated
with the aid of a simple, steady, inviscid, axisymmetric equation of motion.
This equation has been a starting point for most studies of vortex breakdown
but a departure in the present study is that it is explored directly and not
through perturbations of an initial stream function. The findings are then
generalised to the case of vortex breakdown in swirling pipe flows.
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axlsymmetrlc Navier+ Stokes equations are p~resented and compared with
results from experiments for a confined cylindrical flow. The
details of the vortex breakdown phenomenon are calculated with a
high degree of accuracy. From solutions over a range of parameters
the essential features of the flow are obtained. These solutions
also provide flow quantities such as the vorticity and the pressure
throughout the volume which would be difficult to obtain from,
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16. ABSTRACT (COT.) .-

- experiments. --- In this papery-the solutions are explored and the
essential physical mechanisms of vortex breakdown in this particular
geometry are identified. These mechanisms, which rely on the
production of a negative azimuthal component of vorticity as a result
of the stretching and tilting of the predominantly axially directed
vorticity vector, are elucidated with the aid of a simple, steady,
inviscid, axisymmetric equation of motion. This equation has been a
starting point for most studies of vortex breakdown but a departure
in the present study is that it is explored directly and not through
perturbations of an initial stream function. The findings are then
generalised to the case of vortex breakdown in in swirling pipe
flows.

17. T1VPIINT

AERONAUTICAL RESEARCH LABORATORY, MELBOURNE

18. DOCUMEW SERIES AD NUMBER 19. COST CODE 20. TYPE OF F-M AD PRIOD

AERODYNAMICS REPORT 174 54 5006

21. C3 R PROGRAMS USED

22. ESTABLISHK4ED FILE RFf.(S)

23. ADDITIONAL IHffHMATIO (AS REQUIRED)


